The pattern of the factor loadings are much clear now. Different from the variable visual, the variable straight has large loadings on both Factor 2 and Factor 4. With the correlation matrix, we first decide the number of factors. Note that after rotation, the test of the model is the same as without rotation. First, scan the matrix for correlations greater than .3, then look for variables that only have a small number of correlations greater than this value. 2010. In factor analysis we are interested in finding common underlying dimensions within the data and so we are primarily interested only in the common variance. The PROMAX rotation is one kind of oblique rotation and is widely used. The correlation among the factors are given in the section of Factor Correlation. $Variable_i - Mean_i = l_{i1} Factor_1 + … + l_{ik}Factor_k + \varepsilon_i$. Natürlich können auch nach der Berechnung der polychorischen Korrelationen in R, die Analyse weiter in R durchgeführt werden. For factor analysis, we try to find a small number of factors that can explain a large portion of the total variance. Der Zielkonflikt der Faktorenanalyse besteht darin zu wählen, ob eine hohe oder eine geringe Faktorenanzahl zielführender ist. Die Minimalvoraussetzung für eine sinnvolle Anwendung einer Faktorenanalyse ist, dass zwischen mindestens zwei der Variablen auch in der Grundgesamtheit Zusammenhänge bestehen. There are different arguments about whether the two techniques provide different results to the same problem. The evidence from the scree plot and from the eigenvalues suggests a four-component solution may be the best. In general, there are two methods for estimating factor scores: the regression method and the Bartlett method. Therefore, when we run a factor analysis it is fundamental that we know how much of the variance present in our data is common variance. Therefore, we can have 4 factors. The usual exploratory factor analysis involves (1) Preparing data, (2) Determining the number of factors, (3) Estimation of the model, (4) Factor rotation, (5) Factor score estimation and (6) Interpretation of the analysis. Then scan the correlation coefficients themselves and look for any greater than .9. When the drop ceases and the curve makes an elbow toward less steep decline, Cattell's scree test says to drop all further components/factors after the one starting the elbow. Based on the rotated factor loadings, we can name the factors in the model. If we want to measure something, we need to ensure that the questions asked relate to the construct that we intend to measure. The difference between the reproduced and actual correlation matrices is referred to as the residuals, and these are obtained with the factor.residuals() function. Start studying Vorlesung 9: Konfirmatorische Faktorenanalyse. Also, you can check Exploratory factor analysis on Wikipedia for more resources. 29.Testkonstruktion explorative Faktorenanalyse Spickzettel Datenmatrix standardisiert Ausgangs-Korrelationmatrix Ladungsmatrix Mustermatrix + Strukturmatrix Beispiel: Item 1 „Ich habe gerne viele Menschen um mich herum“ → Zustimmung 0-1-2-3-4 item 1 item 2 item 3 item 4 To reduce a large number of variables to a smaller number of factors for modeling purposes, where the large number of variables precludes modeling all the measures individually. People often try to measure things that cannot directly be measured (so-called latent variables). If the eigenvalue corresponding to a factor is large, that means the variance explained by the factor is large. Bei der Faktorenanalyse handelt es sich um ein mutlivariates Analyseverfahren zur Aufdeckung komplexer Hintergrundvariablen. If we visualize factors as classification axes, then each variable can be plotted along with each classification axis. For example, the Factor 1 is indicated by general, paragrap, sentence, wordc, and wordm, all of which are related to verbal perspective of cognitive ability. Annahmen über die Struktur der Faktorladungen werden nicht gemacht. SS loadings is the sum squared loadings related to each factor. This can be done by identifying significant loadings. PI-R (revidierte NEO-Persönlichkeitsinventar; Ostendorf und Angleitner, 2004), in der jede Dimension durch jeweils sechs Facetten repräsentiert ist. Die explorative Datenanalyse (EDA) oder explorative Statistik ist ein Teilgebiet der Statistik.Sie untersucht und begutachtet Daten, von denen nur ein geringes Wissen über deren Zusammenhänge vorliegt.Viele EDA-Techniken werden im Data-Mining eingesetzt. The proportion of common variance present in a variable is known as the communality. To generate “factor scores” representing values of the underlying constructs for use in other analyses. Die Motivation und ihre Ziele sind in Punkt 2.1 beschrie- In einem ersten Schritt galt es die Items des NEO-PI-R genauer zu betrachten und sich an ihnen zu orientieren. This is to say if we add the eigenvalues of the selected number of factor, the total values should be larger than 80% of the sum of all eigenvalues. Explorative Faktorenanalyse: Einführung und Analyse mit R Christina Werner ⋅ Frühling 2014 ⋅ Universität Zürich 1 Wozu verwendet man Faktorenanalysen? Researchers often wish to develop scales that respond to a single characteristic. Im folgenden besprechen wir Hauptkomponentenanalyse wird meistens dort eingesetzt, wo Variablen stark miteinander korrelieren. Proportion Var is the variances in the observed variables/indicators explained by each factor. The eigenvalues correspond to the variance of each factor. nannt. Die explorative Faktorenanalyse dient ausschließlich der Erkundung verdeckter Strukturen einer Stichprobe bzw. Alternatively, we can use the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy (i.e., to determine if the sample size is big enough). Hier ist r(21) die Korrelation der Variablen 1 und 2. However, you can measure different aspects of burnout: you could get some idea of motivation, stress levels, and so on. Reliability analysis is done with the alpha() function, which is found in the psych package. In other words, what latent variables contribute to anxiety about R? The plot looks like the side of a mountain, and "scree" refers to the debris fallen from a mountain and lying at its base. This is handy because it makes it easy to calculate various things. Das geeignete Verfahren hierzu stellt die konfirmatorische Faktorenanalyse dar. Geometrisch gesehen, werden die in die Berechnung einbezogenen Items als Vektoren gesehen, die allesamt vom selben Ursprung ausgehen. Hi, ich bin absoluter Statistik/SPSS Neuling und habe daher folgende Frage: Recall that we have four factors: fear of computers, fear of statistics, fear of mathematics, and peer evaluation. One way to think of this is that, other things being equal, a person should get the same score on a questionnaire if they complete it at two different points in time (we have already discovered that this is called test–retest reliability). To determine what features are most important when classifying a group of items. For this model, the chi-square statistic is 102.06 withdegrees of freedom 101. Wir müssen also die Daten auf eine Weise reduzieren, bei der die geringste Menge an Informationen verloren geht, wir aber gleichzeitig unsere Modellgüte nicht senken. This method randomly splits the data set into two. Dieses Blog erklärt, wie Psychologen und Sozialwissenschaftler statistische Berechnungen mit dem Statistikprogramm "R" durchführen können. This chapter actually uses PCA, which may have little difference from factor analysis. The analysis of other three factors is very similar and thus skipped. You cannot measure burnout directly: it has many facets. The second method generally works better. As such, a variable that has no specific variance (or random variance) would have a communality of 1; a variable that shares none of its variance with any other variable would have a communality of 0. Im weiteren Verlauf wird es um die explorative Faktorenanalyse gehen. Hauptkomponentenanalyse erstellt eine Reihe von Hauptkompon… For this example, we can identify 4 factors based on the scree plot below. To determine what sets of items “hang together” in a questionnaire. I skipped some details to avoid making the post too long. scores on general information test, test 5, scores on paragraph comprehension test, test 6, scores on sentence completion test, test 7, scores on word classification test, test 8, scores on counting groups of dots test, test 12, scores on straight and curved capitals test, test 13, scores on number recognition test, test 15, scores on figure recognition test, test 16, scores on numerical puzzles test, test 21, scores on problem reasoning test, test 22, scores on series completion test, test 23, scores on Woody-McCall mixed fundamentals, form I test, test 24, scores on additional paper form board test, test 25. Below is the screenshot of a questionnaire (copied from the book): The questionnaire was designed to predict how anxious a given individual would be about learning how to use R. What’s more, I wanted to know whether anxiety about R could be broken down into specific forms of anxiety. Die explorative Faktorenanalyse hat die Komplexitätsreduktion zum Ziel. The uniqueness part is also called uniqueness factor, which is specific to each observed variable. But all the methods are based on the eigenvalues of the correlation matrix. We tend to use the term unique variance to refer to variance that can be reliably attributed to only one measure. If a factor is a classification axis along which variables can be plotted, then factor rotation effectively rotates these factor axes such that variables are loaded maximally on only one factor. We can also see that the primary indicators for Factor 1 are general, paragrap, sentence, wordc, and wordm. …In short, their study indicated that as communalities become lower the importance of sample size increases. So for computerFear, which has only positively scored items, we would use: but for statisticsFear, which has item 3 (Question 3, the negatively scored item) as its second item, we would use: To reiterate, we’re looking for values in the range of .7 to .8 (or thereabouts) bearing in mind what we’ve already noted about effects from the number of items. Stevens (2002) summarizes the evidence and concludes that, with 30 or more variables and communalities greater than .7 for all variables, different solutions are unlikely; however, with fewer than 20 variables and any low communalities (< .4), differences can occur. We cannot find a clear pattern in the factor loadings to have a deep understanding of the factors. Guadagnoli and Velicer (1988) concluded that the solutions generated from PCA differ little from those derived from factor analysis techniques. Factor analysis is a technique to identify the smaller set of clusters of variables to represent the whole variance. For example, the following code obtains the Bartlett factor scores. Similarly, we might label the factor 2 as fear of statistics, factor 3 fear of mathematics, and factor 4 peer evaluation. For example, management researchers might be interested in measuring ‘burnout’, which is when someone who has been working very hard on a project for a prolonged period of time suddenly finds themselves devoid of motivation and inspiration. The variance of the uniqueness is in the Uniquenesses section. These two approaches differ in how to estimate communality. If we measure several variables, or ask someone several questions about themselves, the correlation between each pair of variables (or questions) can be arranged in what’s known as an R-matrix. • Die explorative Faktorenanalyse. # again, only six rows of the matrix are shown. Factor analysis originated a century ago with Charles Spearman's attempts to show that a wide variety of mental tests could be explained by a single underlying intelligence factor. To demonstrate the dimensionality of a measurement scale. There are several ways to do it. However, there is also variance that is specific to one measure but not reliably so; this variance is called error or random variance. There are two types of rotation that can be done. It is the overall variance explained in all the 19 variables by each factor. In EFA, a correlation matrix is analyzed. First, note the number of eigenvalues is the same as the number of variables. This command re-creates the object residuals by using only the upper triangle of the original matrix. This second approach is used in factor analysis. For a total of $p$ variables, the total variance is therefore $p$. Both will give you the same results below. In addition, only data from the 145 students in the Grant-White School are used. Hier kommt die Hauptkomponentenanalyse ins Spiel. Through factor rotation, we can make the output more understandable and is usually necessary to facilitate the interpretation of factors. Then, to inspect the correlation matrix, we should run Bartlett’s test by using cortest.bartlett() from psych package. Zielkonflikt der Faktorenanalyse. Each factor stands for several questions in the questionnaire. The 26 tests are described below with the 19 used in the example are highlighted. In diesem Video zeige ich Dir, wie die explorative Faktorenanalyse mit R funktioniert. Wiesbaden: VS Verlag für Sozialwissenschaften. print.psych() command prints the factor loading matrix associated with the model pc3, but displaying only loadings above .3 (cut = 0.3) and sorting items by the size of their loadings (sort = TRUE). To do this, we use an identical command to the previous model but we change nfactors = 23 to be nfactors = 4 because we now want only four factors. To identify the nature of the constructs underlying responses in a specific content area. We now have an object called residuals that contains the residuals stored in a column. Once the number of factors is decided, we can conduct exploratory factor analysis using the R function factanal(). Dieser konzeptionelle Aufbau sollte auch für das B5 übernommen werden. r.drop is the correlation of that item with the scale total if that item isn’t included in the scale total. Principal component analysis is carried out using the principal() function in the psych package. The R input and output for this example is given below. # type="b" will show both the line and the points, # head(pc5$scores) # access scores by pc5$scores, # bind the factor scores to raqData dataframe for other use, # alpha(statisticsFear, keys = c(1, -1, 1, 1, 1, 1, 1, 1)), Factor analysis vs. principal components analysis (PCA), Factor rotation to improve interpretation, Reproduced correlation matrix + difference between the reproduced cor matrix and the original cor matrix. Data used in this example include nineteen tests intended to measure four domains: spatial ability, verbal ability, speed, and memory. Remember that the communality is the proportion of common variance within a variable, Now that we have the communalities, we can go back to Kaiser’s criterion to see whether we still think that four factors should have been extracted. The reproduced correlations are obtained with the factor.model() function. Diese Kommunaltit aten werden im Rahmen der Hauptfaktorenanalyse iterativ gesch atzt. There are various methods of estimating communalities, but the most widely used (including alpha factoring) is to use the squared multiple correlation (SMC) of each variable with all others. Learn vocabulary, terms, and more with flashcards, games, and other study tools. Such factor plot can be drawn after the factors have been extracted via techniques described in later section (e.g., PCA). Wolff, Hans-Georg, und Johann Bacher. Also, factors here should not be confused with independent variables in factorial ANOVA. If any of these values of r.drop are less than about .3 then we’ve got problems, because it means that a particular item does not correlate very well with the scale overall. Für die vorliegenden Daten wird der Bartlett-Test auf Sphärizität mit einem Chi-Quadrat-Wert von 696.946 bei 378 Freiheitsgraden signifikant (p = .00) . The existence of clusters of large correlation coefficients between subsets of variables suggests that those variables could be measuring aspects of the same underlying dimension. 2 Faktorenanalyse mit R-Toolbox 5 2.1 Eingabe einer Korrelations- oder Kovarianzmatrix 6 3 Explorative Faktorenanalyse 7 3.1 Hauptkomponentenanalyse 7 3.1.1 Graphische Veranschaulichung für zwei Variablen x1, x2 8 3.1.2 Wichtige Begriffe, die sich aus der analytischen Lösung ergeben 11 In Handbuch der sozialwissenschaftlichen Datenanalyse, Hrsg. The simplest way to do this in practice is to use split-half reliability. Mit Hilfe von Faktorenanalysen kann untersucht werden,ob sich viele beobachtbare Va-riablen (z.B. For \(u_{visual}\), the variance is 0.465. We can set rotate="varimax" in the principal() function. Sie unterscheidet sich von der Korrelationsmatrix insofern, dass auf ihrer Diagonale die Kommuna-lit aten h2 i = 1 v2 i stehen. die Antworten von Personen auf eine Menge Testitems) durch wenige da- In EFA, each observed data consists of two part, the common factor part and the uniqueness part. We illustrate how to conduct exploratory data analysis using the data from the classic 1939 study by Karl J. Holzinger and Frances Swineford. 1 Grundlagen 2 Explorative und konfirmatorische Faktorenanalyse 3 Zielkonflikt der Faktorenanalyse 4 Ablauf der Faktorenanalyse 5 Quellen Für viele marktforscherische Fragestellungen ist die Untersuchung des Wirkungszusammenhangs zwischen einer abhängigen und … All these items seem to relate to using computers or R. Therefore we might label this factor fear of computers. In this case, we might say that the variable visual is mainly influenced by Factor 2. Sie ist nicht dazu geeignet, bereits vorhandene Theorien zu überprüfen. Des Weiteren muss die explorative Faktorenanalyse von der konfirmativen Faktorenanalyse abgegrenzt werden. Laut Iacobucci (2001) dienen sie verschiedenen Zwecken: Explorative Faktorenanalysen zielen allein auf die Identifikation von Strukturen ab. With all communalities above .6, relatively small samples (less than 100) may be perfectly adequate. If you’re using factor analysis to validate a questionnaire, it is useful to check the reliability of your scale. Die explorative Faktorenanalyse nutzen wir, um latente (d.h. nicht beobachtete) Faktoren zu finden, die unseren Daten vermutlich zugrundeliegen. As such, our determinant does not seem problematic. There are many different rotation methods such as the varimax rotation, quadtimax rotation, equimax rotation, oblique rotation, etc. Auf der Basis der Korrelationsmatrix alleine kann jedoch nicht entschieden werden, ob die Zusammenhänge zwischen den Variablen durch dahinterliegende Faktoren erklärt werden können. The null hypothesis that a 4-factor model is sufficient. To select a subset of variables from a larger set, based on which original variables have the highest correlations with the principal component factors. Anmerkung. This presents us with a logical impasse: to do the factor analysis we need to know the proportion of common variance present in the data, yet the only way to find out the extent of the common variance is by carrying out a factor analysis. Note the factor loadings are from the Loadings section of the output. The communalities (the h2 column) and uniquenesses (the u2 column) are changed. The factor loading can be thought of as the Pearson correlation between a factor and a variable. explorative Faktorenanalyse - Faktorladung größer 1. 3 Beiträge • Seite 1 von 1. explorative Faktorenanalyse - Faktorladung größer 1. von Chris118 » Do 1. Google Scholar The off-diagonal elements are the correlation coefficients between pairs of variables, or questions. The first is orthogonal rotation while the other is oblique rotation. With the correlation matrix, we can take the variance of each variable as 1. Simplistically, though, factor analysis derives a mathematical model from which factors are estimated, whereas PCA merely decomposes the original data into a set of linear variates. In this case, α of computerFear is slightly above .8, and is certainly in the region indicated by Kline (1999), so this probably indicates good reliability. Außerdem werden sie häufig in Lehrveranstaltungen über die Statistik als Einführung in das statistische Denken gelehrt. Thanks for reading and feel free to correct me if I made any mistake. h2 is the communalities, for now, all are 1; u2 is the uniqueness or unique variance, it’s 1 minus the communality, for now, all are 0, The eigenvalues are stored in a variable called pc1$values. A test is conducted to test whether the factor model is sufficient to explain the observed data. If a scale is very reliable a person’s score on one half of the scale should be the same (or similar) to their score on the other half: two halves should correlate very highly. Sie versucht, die Beziehungszusammenhänge in einem Variablenset insofern zu strukturieren, als sie Gruppen von Variablen identifiziert, die hoch miteinander korreliert sind. Using the variable visual as an example, we have, \[ visual = 0.536\times Factor1 + 0.176\times Factor2 + 0.392\times Factor3 - 0.249\times Factor4 + u_{visual} \]. Sometimes, the purpose of factor analysis is to estimate the score of each latent construct/factor for each participant. And for Factor 4, the indictors include add, code, counting, and straight. Learn vocabulary, terms, and more with flashcards, games, and other study tools. For example, two factors (e.g., “Sociability” and “Consideration”) can be plotted as a 2D graph, while six variables (e.g., “Selfish”) can be put at corresponding positions on the graph, as shown below (copied from Figure 17.3). The correlations between variables can be checked using the cor() function to create a correlation matrix of all variables. Having done this, it would be helpful to know whether these differences really do reflect a single variable. But there are too many things to see. This method is loosely equivalent to splitting data in two in every possible way and computing the correlation coefficient for each split, and then compute the average of these values. --> nein: Explorative Faktorenanalyse EFA Die Information aus der Faktorenanalyse wird evtl.. Genutzt um Modifikationen des Testinhalts durchzuführen. Neben der explorativen, der strukturentdeckenden, gibt es die kon r-matorische Faktorenanalyse, welche bereits bestehende Konstrukte uberpr uft. In diesem Video zeige ich Dir, wie die explorative Faktorenanalyse mit R funktioniert. To validate a scale or index by demonstrating that its constituent items load on the same factor, and to drop proposed scale items which cross-load on more than one factor. Besonders oft wird dieses Verfahren bei der Erstellung und Validierung von Fragebögen eingesetzt, um zu überprüfen, welche latenten Faktoren mit diesem Fragebogen erfasst werden. The data are saved in the file GrantWhite.csv. As an example, the linear regression is also fitted. The items range in value from 1 to 5, which represent a scale from Strongly Dislike to Strongly Like. Christof Wolf und Henning Best, 333–365. One usage of factor analysis is to develop questionnaires. Die explorative Faktorenanalyse hat zum Ziel, Strukturen in großen Variablensets zu erkennen, die untereinander Korrelationen aufweisen. Alternatively, straight measures both factors than just a single factor. Most code and text are directly copied from the book. Hier wird es (mehr oder weniger) dem mathemati-schen Algorithmus überlassen, wieviele interpretierbare Faktoren sich aus einer Korrelationsmatrix generieren lassen (Faktorenanalyse mit SPSS). The basic idea can be related to the variance explained as in regression analysis. (Skipped here). Bei der Hauptkomponentenmethode Therefore, the eigenvalues can be used to select the number of factors. First, let’s understand some keywords, including factors, loading, and communality. Second, the sum of all the eigenvalues is equal to the number of variables. Er stellt eine Hilfe zur Bestimmung der Faktorenzahl mittels Screetest dar. A factor loading means the coordinate of a variable along a classification axis. For example, the correlation between Factor 1 and Factor 2 is 0.368. Daniela KellerIch bin Statistik-Expertin aus Leidenschaft und bringe Dir auf leicht verständliche Weise und anwendungsorientiert die statistische Datenanalyse bei. Therefore, the first factor explains the total of 5.722 variance, that's about 30.1%=5.722/19. In this case, all data are above .3, which is encouraging. The first thing to do when conducting a factor analysis or PCA is to look at the correlations of the variables. veranschaulichen. R bietet gegenüber SPSS nicht nur den Vorteil, dass es kostenlos ist, sondern weist auch einen größeren Funktionsumfang auf. According to the results and the screenshot of questionnaires above, we could find the questions that load highly on factor 1 are Q6 (“I have little experience of computers”) with the highest loading of .80, Q18 (“R always crashes when I try to use it”), Q13 (“I worry I will cause irreparable damage …”), Q7 (“All computers hate me”), Q14 (“Computers have minds of their own …”), Q10 (“Computers are only for games”), and Q15 (“Computers are out to get me”) with the lowest loading of .46. r.drop is the correlation of that item with the scale total if that item isn’t included in the scale total. The aim is to find a simple solution that each factor has a small number of large loadings and a large number of zero (or small) loadings. The common factor part is based on the four factors, which are also called the common factors. r = .50 entspricht einem starken Effekt Damit entspricht eine Effektstärke von r = .344 (Korrelation zwischen V08 und V12) beispielsweise einem mittleren Effekt. From R, we have the eigenvalues below. For example, fear of computers includes question 6, 7, 10, …, 18. In fact, we want most values to be less than 0.05. In this example, we have four eigenvalues larger than 1. The following R code calculates the correlation matrix. After PROMAX rotation, the factor will be correlated. The diagonal elements of an R-matrix are all ones because each variable will correlate perfectly with itself. For example, the variable visual has a large loading 0.747 on Factor 2 but small than 0.2 loadings on all the other three factors. If any are found then you should be aware that a problem could arise because of multicollinearity in the data. On the other hand, Faktorenanalyse Faktorenanalyse Definition. In the output, we use print(fa.res, cut=0.2) to show factor loadings that are greater than 0.2. So, for the popularity data, imagine you ran a multiple regression using one measure (Selfish) as the outcome and the other five measures as predictors: the resulting multiple R2 (see section 7.6.2) would be used as an estimate of the communality for the variable Selfish. By reducing a data set from a group of interrelated variables into a smaller set of factors, factor analysis achieves parsimony by explaining the maximum amount of common variance in a correlation matrix using the smallest number of explanatory constructs. Mit meinen praxisrelevanten Inhalten und hilfreichen Tipps wirst Du statistisch kompetenter und bringst Dein Projekt einen großen Schritt voran. The output of PROMAX rotation is shown below. N=Stichprobenumfang.. Fazit: Mindestens N=100 stimmt nicht immer (pauschal).Auf Basis dieser Recherchen, scheint es trotz eines „geringen“ Stichprobenumfangs (von z.B. A score for each participant is then calculated based on each half of the scale. With communalities in the .5 range, samples between 100 and 200 can be good enough provided there are relatively few factors each with only a small number of indicator variables. This post covers my notes of Exploratory Factor Analysis methods using R from the book “Discovering Statistics using R (2012)” by Andy Field. Factor analysis (and Principal Components Analysis (PCA)) is a technique for identifying groups or clusters of variables. In other words, the relationship can be represented as a math equation below: $Factor_i = b_1 Variable_{1i} + b_2 Variable_{2i} +…+ b_n Variable_{ni} + \varepsilon_i $. One way to name the factor is to call it a verbal factor. Faktorenanalyse: Z = FLT + E und: R = LLT + V R V = LLT R h = LL T R h wird reduzierte Korrelationsmatrix genannt. For our present purposes we will use principal components analysis (PCA), which strictly speaking isn’t factor analysis; however, the two procedures may often yield similar results.
Bußgeld Quarantäne Missachtung Nrw, Falcon Crest Melissa, Finn Cole Eye Color, Janine Meißner Op, Polnisch Für Anfänger Arbeitsblätter, Formula 1 2021 Schedule, Come Ye Sons Of Art Purcell, Jasp Mixed Models, Landhaus Vorhänge österreich, Die Freudlose Gasse, Verdammt Sind Sie Alle Imdb,